3.1938 \(\int \frac{1}{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx\)

Optimal. Leaf size=82 \[ \frac{\tanh ^{-1}\left (\frac{a e^2+c d^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{\sqrt{c} \sqrt{d} \sqrt{e}} \]

[Out]

ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d
^2 + a*e^2)*x + c*d*e*x^2])]/(Sqrt[c]*Sqrt[d]*Sqrt[e])

_______________________________________________________________________________________

Rubi [A]  time = 0.069668, antiderivative size = 82, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.069 \[ \frac{\tanh ^{-1}\left (\frac{a e^2+c d^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{\sqrt{c} \sqrt{d} \sqrt{e}} \]

Antiderivative was successfully verified.

[In]  Int[1/Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2],x]

[Out]

ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d
^2 + a*e^2)*x + c*d*e*x^2])]/(Sqrt[c]*Sqrt[d]*Sqrt[e])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 6.61721, size = 80, normalized size = 0.98 \[ \frac{\operatorname{atanh}{\left (\frac{a e^{2} + c d^{2} + 2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{a d e + c d e x^{2} + x \left (a e^{2} + c d^{2}\right )}} \right )}}{\sqrt{c} \sqrt{d} \sqrt{e}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(1/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)

[Out]

atanh((a*e**2 + c*d**2 + 2*c*d*e*x)/(2*sqrt(c)*sqrt(d)*sqrt(e)*sqrt(a*d*e + c*d*
e*x**2 + x*(a*e**2 + c*d**2))))/(sqrt(c)*sqrt(d)*sqrt(e))

_______________________________________________________________________________________

Mathematica [A]  time = 0.0985103, size = 111, normalized size = 1.35 \[ \frac{\sqrt{d+e x} \sqrt{a e+c d x} \log \left (2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{d+e x} \sqrt{a e+c d x}+a e^2+c d^2+2 c d e x\right )}{\sqrt{c} \sqrt{d} \sqrt{e} \sqrt{(d+e x) (a e+c d x)}} \]

Antiderivative was successfully verified.

[In]  Integrate[1/Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2],x]

[Out]

(Sqrt[a*e + c*d*x]*Sqrt[d + e*x]*Log[c*d^2 + a*e^2 + 2*c*d*e*x + 2*Sqrt[c]*Sqrt[
d]*Sqrt[e]*Sqrt[a*e + c*d*x]*Sqrt[d + e*x]])/(Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[(a*e
+ c*d*x)*(d + e*x)])

_______________________________________________________________________________________

Maple [A]  time = 0.006, size = 62, normalized size = 0.8 \[{1\ln \left ({1 \left ({\frac{a{e}^{2}}{2}}+{\frac{c{d}^{2}}{2}}+cdex \right ){\frac{1}{\sqrt{dec}}}}+\sqrt{aed+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}} \right ){\frac{1}{\sqrt{dec}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(1/(a*e*d+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x)

[Out]

ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(d*e*c)^(1/2)+(a*e*d+(a*e^2+c*d^2)*x+c*d*e*x^2)
^(1/2))/(d*e*c)^(1/2)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \text{Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x),x, algorithm="maxima")

[Out]

Exception raised: ValueError

_______________________________________________________________________________________

Fricas [A]  time = 0.229748, size = 1, normalized size = 0.01 \[ \left [\frac{\log \left (4 \,{\left (2 \, c^{2} d^{2} e^{2} x + c^{2} d^{3} e + a c d e^{3}\right )} \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} +{\left (8 \, c^{2} d^{2} e^{2} x^{2} + c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4} + 8 \,{\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right )} \sqrt{c d e}\right )}{2 \, \sqrt{c d e}}, \frac{\arctan \left (\frac{{\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt{-c d e}}{2 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} c d e}\right )}{\sqrt{-c d e}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x),x, algorithm="fricas")

[Out]

[1/2*log(4*(2*c^2*d^2*e^2*x + c^2*d^3*e + a*c*d*e^3)*sqrt(c*d*e*x^2 + a*d*e + (c
*d^2 + a*e^2)*x) + (8*c^2*d^2*e^2*x^2 + c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4 + 8*(c
^2*d^3*e + a*c*d*e^3)*x)*sqrt(c*d*e))/sqrt(c*d*e), arctan(1/2*(2*c*d*e*x + c*d^2
 + a*e^2)*sqrt(-c*d*e)/(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*c*d*e))/sqrt
(-c*d*e)]

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{1}{\sqrt{a d e + c d e x^{2} + x \left (a e^{2} + c d^{2}\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)

[Out]

Integral(1/sqrt(a*d*e + c*d*e*x**2 + x*(a*e**2 + c*d**2)), x)

_______________________________________________________________________________________

GIAC/XCAS [A]  time = 0.25314, size = 116, normalized size = 1.41 \[ -\frac{\sqrt{c d} e^{\left (-\frac{1}{2}\right )}{\rm ln}\left ({\left | -\sqrt{c d} c d^{2} e^{\frac{1}{2}} - 2 \,{\left (\sqrt{c d} x e^{\frac{1}{2}} - \sqrt{c d x^{2} e + c d^{2} x + a x e^{2} + a d e}\right )} c d e - \sqrt{c d} a e^{\frac{5}{2}} \right |}\right )}{c d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x),x, algorithm="giac")

[Out]

-sqrt(c*d)*e^(-1/2)*ln(abs(-sqrt(c*d)*c*d^2*e^(1/2) - 2*(sqrt(c*d)*x*e^(1/2) - s
qrt(c*d*x^2*e + c*d^2*x + a*x*e^2 + a*d*e))*c*d*e - sqrt(c*d)*a*e^(5/2)))/(c*d)